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Abstract—Surface wave tomography based on continuous
regionalization of model parameters is widely used to invert for
2-D phase or group velocity maps. An inevitable problem is that
the distribution of ray paths is far from homogeneous due to the
spatially uneven distribution of stations and seismic events, which
often affects the spatial resolution of the tomographic model. We
present an improved tomographic method with a spatially varying
smoothing scheme that is based on the continuous regionalization
approach. The smoothness of the inverted model is constrained by
the Gaussian a priori model covariance function with spatially
varying correlation lengths based on ray path density. In addition, a
two-step inversion procedure is used to suppress the effects of data
outliers on tomographic models. Both synthetic and real data are
used to evaluate this newly developed tomographic algorithm. In
the synthetic tests, when the contrived model has different scales of
anomalies but with uneven ray path distribution, we compare the
performance of our spatially varying smoothing method with the
traditional inversion method, and show that the new method is
capable of improving the recovery in regions of dense ray sam-
pling. For real data applications, the resulting phase velocity maps
of Rayleigh waves in SE Tibet produced using the spatially varying
smoothing method show similar features to the results with the
traditional method. However, the new results contain more detailed
structures and appears to better resolve the amplitude of anomalies.
From both synthetic and real data tests we demonstrate that our
new approach is useful to achieve spatially varying resolution when
used in regions with heterogeneous ray path distribution.
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1. Introduction

Surface wave tomography based on dispersion
measurement from earthquake waveforms or ambient
noise cross-correlations is an effective tool to study
the structure of crust and upper mantle on both
regional and global scales (e.g., Montagner and
Tanimoto 1991; Ritzwoller et al. 2001; Shapiro et al.
2004; Debayle et al. 2005; Yang et al. 2007; Lin et al.
2008; Yao et al. 2010).

The classical surface wave tomography from
dispersion data is usually performed in two stages.
The first stage involves 2-D regionalization in which
2-D period-dependent phase or group maps are con-
structed based on the ray theory (e.g., Montagner
1986; Ekstrom et al. 1997; Barmin et al. 2001), 2-D
finite frequency sensitivity kernels (e.g., Ritzwoller
et al. 2002; Yoshizawa and Kennett 2004), or Eikonal
or Helmholtz equations in regions with dense station
distribution (Lin et al. 2009; Pollitz and Snoke 2010;
Lin and Ritzwoller 2011). In the second stage, at each
geographical location, the pure path dispersion curve
is inverted to obtain a local 1-D shear velocity model,
which together forms the fully 3-D shear wave speed
model (e.g., Shapiro and Ritzwoller 2002; Yao et al.
2008). The dispersion data from available paths can
be also directly inverted for 3-D shear velocity vari-
ations without construction of phase or group velocity
maps (e.g., Boschi and Ekstrom 2002; An et al. 2009;
Fang et al. 2015).

A number of traveltime tomographic methods
based on the ray theory have been developed to invert
surface-wave dispersion measurements on regional or
global scales for 2-D isotropic and azimuthally ani-
sotropic velocity maps, which differ in aspects such
as geometry, model parameterization, and
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regularization schemes. For example, based on
parameterization of integral kernels, the 2-D Backus—
Gilbert approach using the first-spatial gradient
smoothness constraints (Ditmar and Yanovskaya
1987; Yanovskaya and Ditmar 1990) has been
extensively used in regional 2D phase or group
velocity tomography (e.g., Levshin et al. 1989;
Ritzwoller and Levshin 1998). The tomographic
technique presented by Barmin et al. (2001) based on
minimizing a penalty function composed of data
misfit, model smoothness, and the path coverage is
widely used in regional or global scale applications
(e.g., Yang et al. 2007; Lin et al. 2008). Surface wave
tomography with continuous regionalization based on
the Bayesian Theorem (Montagner 1986), which is
derived from the continuous form proposed by
Tarantola and Nercessian (1984), is also widely used
to constrain phase velocity variations and azimuthal
anisotropy (e.g., Silveira and Stutzmann 2002;
Debayle and Sambridge 2004; Yao et al. 2005, 2010).
The approach proposed by Debayle and Sambridge
(2004) has dramatically increased the computational
efficiency of the original method by Montagner
(1986) with incorporation of some sophisticated
geometrical algorithms.

For surface-wave tomographic problems, an
inevitable issue is that the uneven distribution of ray
paths often leads to the relatively ill-conditioned
inverse problem. Consequently, damping and model
regularization are introduced to stabilize the ill-posed
inverse system, which usually sacrifices some model
resolution. To overcome this problem, a useful way is
to change the model parameterization scheme. One
explicit strategy is irregular parameterization based
on rectangles (or squares) with adaptive grid spacing
(e.g., Abers and Roecker 1991; Spakman and Bij-
waard 2001; Simons et al. 2002) or Delaunay
triangles (or Voronoi diagram) with flexible shape
and size (e.g. Sambridge and Gumundsson 1998;
Bohm et al. 2000; Debayle and Sambridge 2004;
Zhang and Thurber 2005). Using this kind of irreg-
ular parameterization, the irregular grids/blocks can
match with the non-uniform ray path distribution,
reduce the number of free parameters, and improve
stability of traditional tomographic methods. Another
popular strategy is the wavelet-based multi-resolution
parameterization, which has been applied to
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compensate for the mismatch correlation between
uneven ray path distribution and regular grids to
resolve the model at different scales using the
inherent multiscale nature of the wavelet transform in
the spatial domain (e.g., Chiao and Kuo 2001; Chiao
and Liang 2003; Loris et al. 2007; Delost et al. 2008;
Hung et al. 2011; Simons et al. 2011; Fang and Zhang
2014). In addition, an adaptive parameterization
method, the Bayesian trans-dimensional tomography,
in which the number of unknowns is an unknown
itself, has been shown its feasibility in most 2-D and
some 3-D problems (e.g., Bodin and Sambridge 2009;
Hawkins and Sambridge 2015; Saygin et al. 2016).
And this method can give a quantitative access to the
reliability of the solution model.

Besides changing the model parameterization,
another way to fulfill tomography with spatial vary-
ing resolution is to allow for spatially variable priors
or smoothing constraints in the model regularization.
In this paper, following the continuous regionaliza-
tion inversion method with a least squares criterion
proposed by Tarantola and Valette (1982), we modify
the fixed correlation length in the Gaussian a priori
covariance function to be a spatial function of ray
path density. In this way, smoothness of the inverted
model in regions with different ray path coverage is
constrained by the a priori covariance function with
spatially varying correlation lengths. We use both
synthetic and real data to evaluate the performance of
our algorithm.

2. Methodology

The continuous regionalization inversion
approach takes the function of a continuous variable
itself as the unknown where the theoretical relation-
ship between data and unknowns is assumed to be
linear (Tarantola and Valette 1982). This method has
been applied to 3-D seismic velocity tomography
using arrival times of body waves (Tarantola and
Nercessian 1984) and surface waves (Montagner
1986; Yao et al. 2005). In this section, we describe
the inversion method for regional surface wave
tomography used in Montagner (1986), and then
present the spatially varying smoothing scheme on
this basis.
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2.1. Spatially Varying Smoothing Based
on Continuous Regionalization

The surface wave tomography method (Montag-
ner 1986) based on continuous regionalization of
model parameters (Tarantola and Nercessian 1984) is
widely used to invert for 2-D surface wave phase and
group velocity maps for its clear physical meaning
when adjusting inversion parameters. With the least
squares criterion, the inversion results not only have
the best data fitting but also can keep as close as
possible to the a priori model. When the data errors
exhibit a Gaussian distribution, the objective function
for the generalized inverse problem (Tarantola and
Valette 1982) is expressed as:

$(m) = (do — d)"C;' (do — d)

+ (mg — m)TC,;O1

(1)
(mo — m),
where d; is a vector of the observed arrival time data
at a fixed period, d is a vector of the arrival time data
predicted from the actual slowness model m through
a forward equation of the form d = g(m), my is the a
priori slowness model, C,4, represents the a priori data
covariance matrix, and C,,, is the a priori model
covariance matrix for the a priori model my,.

A classical least squares solution of Eq. (1) could
be obtained (Tarantola and Valette 1982) as:

m = m, + C,,,G"(GC,,G" + C,) ' (dy — Gmy).
(2)
In the continuous form, G stands for the sensitiv-
ity along the ray paths, which can be represented by
integrals along the ray paths, the unknowns are the
functions of a continuous variable r (spatial location

on the spherical surface here) and the solution
(Tarantola and Nercessian 1984) can be written as

m(r) = mo(r) + Z Wi ds;Cip, (}’7 ri)v (33')

R;(m)

Wi=> (5;"V;, (3b)

Sij = (Cap)y + / ds;
Ri(m) R;(m)

dé}cmo (’.'iv ri)’ (30)
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Vj = doj —

R;(m)

dsjmo(r;). (3d)

Here, i and j are the path indexes and the integral
path R;(m) is assumed to be along the ith great circle
path for surface wave propagation. It is usually
assumed that phase or group velocity measurements
are independent for each path. In this case, Cy, is a
diagonal matrix and the diagonal term represents the
square of the estimated data error (d%) (i.e., variance)
in the ith measurement.

In generally, the model a priori covariance
function describes the confidence in the a priori
model my and controls the correlation between
neighboring grids. The Gaussian a priori covariance
function C,,,(r,r’) used by Tarantola and Nercessian
(1984) and Montagner (1986) represents the covari-
ance between points r and 7 with the analytical form
of:

~-A2,
Cong (1, 7) = G(r)on(r') exp <2L2” ) ;4

corr

where A, is the distance between grid points r and
¥, the ¢,,(r) represents the a priori model uncertainty
at each grid point that controls the amplitude per-
turbation of the model parameters, and Loy
represents the correlation length of the model
parameters that acts as the spatial smoothing filter in
the model space. For many tomographic problems,
we do not know the exact model prior a,,(r). How-
ever, we could roughly estimate a,,(r) based on the
data, here phase (or group) velocities measured at
each ray paths, which is commonly referred as the
“Empirical Bayesian” approach (e.g., Gelman et al.
2004). In general, we set g,,(r) as about twice that of
the standard deviation of all observed phase or group
velocities at each period.

The correlation length L., is a fixed value for
each period in the previous continuous regionaliza-
tion approach (Montagner 1986; Yao et al. 2005), and
its value mainly depends on the spatial and azimuthal
coverage of ray paths and the wavelength of surface
wave. Because of the fixed L., the size of
heterogeneity that the inversion can retrieve is greater
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or equal to 2L..,, approximately. Hence, to avoid
small-scale inversion artifacts and get reliable results,
Lo cannot be too small, thus tends to inevitably
smear out sharp boundaries and fine scale features in
regions with dense ray path coverage.

To solve the problem and improve the local
resolution in regions with enough ray path coverage,
we change the fixed correlation length L., into
spatially varying L., as a function of local ray path
density, namely, assigning smaller values to L., in
regions with higher path density so as to achieve
spatially varying smoothing for the 2-D velocity
model. And the new a priori model covariance
function can be written as:

—A?,
C’”U(r’ r ) = o’m(r)Um(l’ ) cxp <2Lcorr@(r) )l:corr(p(rl))> 7

(5)

where the correlation length L., (p(r)) is a spatially
varying function proportional to the ray path density
p(r) at the grid point r. This idea is similar to inver-
sion of the 1-D shear velocity model from dispersion
data, where smaller correlation lengths are chosen for
model parameters at shallower depths while larger
correlation lengths are given at greater depths, con-
sidering the decreased sensitivity of dispersion data to
shear velocities at greater depths (e.g., Yao et al.
2010).

For the construction of the L., (p(r)), we first
perform a series of checkerboard tests with the
descending anomaly size to assess local resolution in
different regions and find the corresponding appropri-
ate correlation length. In this way, we determine the
minimum anomaly size that we can recover and the
corresponding appropriate correlation length that
should be used. Then, in this study, we set the
Lo (p(r)) varying linearly from the minimum corre-
lation length L, determined in the study region
associated with the largest ray path density to some
appropriate  maximum value L, determined in
regions with small ray path density, although other
functional forms between the ray path density and the
correlation length can be chosen. Besides, we will
illustrate this process in detail in the synthetic test part.
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2.2. Two-Step Inversion for Suppressing Data
Outliers

The standard error in surface wave dispersion
measurements is typically ~1%. However, in prac-
tice, there may exist bad measurements or even data
outliers, which to some extent result in artifacts in the
tomographic models. To suppress the effects of bad
measurements and data outliers, we propose a two-
step inversion scheme in this study. First, we perform
the inversion with the diagonal terms of the a priori
data covariance matrix Cy, set as the square of
estimated measurement errors or 1% of the observed
data for paths without confident error estimates. In
the second step inversion, we calculate the data
misfits (differences between the observed and pre-
dicted velocities) from the first inversion result, and if
the relative data misfits of the corresponding paths
are more than twice of the standard error of all data
misfits, we increase the original data uncertainty ofi
exponentially as the new data uncertainty 6, in C,
following the expression:

Gy - peo] (-1} ©

where € is the absolute value of the corresponding
misfit of the ith path, and & is the standard error of all
data misfits. Here in practice, we save the matrix of
the double-integration (the most time-consuming
computational part) in (3c) in the first step inversion
and update the S;; in (3¢) in the second step inversion
using (6), which is very simple to implement in the
program. In the application and discussion, we use an
example to demonstrate the effectiveness of this two-
step approach.

3. Synthetic Data Tests

Actual spatial resolution of surface wave tomog-
raphy is always a combined effect of geometrical
constraint and physical limitations (Debayle and
Sambridge 2004). The geometric resolution is mainly
constrained by the ray path coverage and azimuthal
distribution, and physical resolution is dominated by
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the wavelength. In general, the upper limit of spatial
resolution is determined by the physical resolution,
that is, the Fresnel zone width of the particular wave
type, under the assumption of ray theory with single
scatting approximation. This is also the main reason
restricting the lateral resolution of global surface
wave tomography (Spetzler and Snieder 2001), in
which the period range is usually between 40 and
300 s and the wavelength range is about
160-1500 km. In the following synthetic tests, we
use the Rayleigh wave phase velocity dispersion data
at the period of 20 s, at which the wavelength is about
60-80 km, and we only take the geometric resolution
into account.

The model a priori covariance function of the
traditional method is generally in a Gaussian form
(Eq. (4)). When the distance between the two points
at r and ¥ is set as the size of checkerboard anoma-
lies, the spatial correlation R(D, L.oy) of these two
points can be written as

R(D, Leorr) = exp (— 2ID; ) (7)

corr

Here, D is the anomaly size, which means the
target horizontal resolution scale or checkerboard
pattern size. When the correlation length L, is set
equal to D, the correlation R(D, L) is about 0.6,
which implies that these two points are strongly
correlated and it is difficult to resolve the anomaly
pattern in this case. And when the correlation length
Loy 18 set as %, the correlation R(D, L..,) is about
0.37 which is an intermediate correlation value. If the
correlation length L., is set to %, the correlation
R(D, L.oy) is about 0.1, which implies very weak
correlation between these two points, and the anom-
aly pattern can be recovered well in regions with
enough ray path coverage, or artifacts will likely be
produced in regions with sparse path coverage since
the inversion may get ill-posed in this situation.

To compare the performance of our spatially
varying smoothing algorithm with traditional algo-
rithm and show the process of how to perform
spatially varying smoothing algorithm, we use the
traditional checkerboard tests although this method
has some drawbacks (Lévéque et al. 1993; Rawlinson
and Spakman 2016). The distribution of ray paths
used in the inversion is the same as that at the period
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of 20 s in SE Tibet as in Yao et al. (2010) for inter-
station Rayleigh wave phase velocity tomography.
Figure le presents the path coverage, and we can
construct the corresponding ray path density (p(r))
map (Fig. 1f). It is obvious that the ray path density is
larger in the Lehigh array area and smaller in the MIT
array area due to denser station distribution in the
Lehigh array area (Fig. 1). This kind of heteroge-
neous distribution of path density is ideal to evaluate
the performance of our algorithm. For convenience,
the Lehigh array area is denoted as block A and the
MIT array area is denoted as block B hereinafter.

We first create two different checkerboard pat-
terns with anomaly size of 0.4° x 0.4° and 1° x 1°
(Figs. 2a, 3a) and assess the local horizontal resolu-
tion by evaluating how well the pattern can be
retrieved in different regions with different ray path
density distributions (Fig. 1f) of the data set. Syn-
thetic phase velocity dispersion data are generated
with these input patterns and we also add 1% Gaus-
sian random errors to the synthetic data. When the
anomaly size is set as 1° x 1° (Fig. 2a), the most
appropriate fixed L. is 40 km with the least model
difference between the input and recovered models
(Fig. 4a). With this correlation length, the anomaly
pattern is almost correctly reconstructed for most of
the study area (Fig. 2d), except for the central region
between the two arrays with non-uniform azimuthal
ray path coverage (Fig. 1f). If we choose a larger
correlation length of 70 km (i.e., Lcor~ %), the
recovered pattern in block B is pretty smooth and
anomaly amplitudes in block A with larger ray path
density are less recovered than results with the cor-
relation length of 40 km. And when we choose the
correlation length of 100 km (i.e. Leo ~ D), the
results of the whole study region get smeared,
because the correlation length is similar to the
anomaly size that causes strong spatial correlation
between model parameters.

Then as for the 0.4° x 0.4° anomaly size, the
corresponding fixed correlation length with the least
model difference is about 20 km (i.e., Lcorrfv%)
(Fig. 4a), and the anomaly pattern is retrieved in
block A with good resolution, while artificial
anomalies appear in block B (Fig. 3b) due to rela-
tively sparse coverage of ray paths and the choice of
small L., (Fig. 1f). And as we choose larger
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Figure 1

Ray path coverage of Rayleigh-wave phase velocity measurements at different periods (10, 30, 20 s) (a, ¢, e) (from Yao et al. 2010) and
corresponding ray path density (P value) maps (b, d, f; the background image with the colorbar for P values) with spatially varying
correlation lengths (black contours). The path density value and spatially varying correlation length maps are calculated based on 0.5° x 0.5°
grids for (b, d) and 0.2° x 0.2° grid for (f). In Fig. 1, the red and blue triangles are the temporary stations deployed by MIT and Lehigh
University, respectively; the two permanent stations (dark purple triangles) are located at Kunming (KMI) and Lhasa (LSA), China

correlation lengths (e.g., Leor = 25km, Leor = So, for ray path coverage of the data set we use,
40km), the amplitude of anomaly in block A is less we can well retrieve the 1° x 1° anomalies pattern
recovered and the artificial anomalies in block B get for almost the entire study region but can only

smoother (Fig. 3c, d). retrieve the 0.4° x 0.4° anomalies in block A with
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Figure 2
Checkerboard tests for the ray path coverage at 20 s with different anomaly sizes: a the input 1° x 1° checkerboard model; b—d recovery of
the 1° x 1° checkerboard model using the traditional method with the fixed correlation length of 40, 70, and 100 km, respectively. The
corresponding path coverage and ray path density maps are shown in Fig. le, f. The black lines show the block boundaries in this region. The
colorbar shows the amplitude of the phase velocity anomaly in percent

enough path density, when we choose the appropriate
correlation length (i.e., Leoy = 40km for 1° x 1°
pattern; Leoy = 20km for 0.4° x 0.4° pattern). This
implies that the horizontal resolution in block A can
reach about 0.4° and only about 1° in block B. Hence,
to avoid spurious tomographic results, we will typi-
cally choose L., to be 40 km or larger for the
traditional approach if only considering the geometric
resolution. This will certainly sacrifice the resolution
in the area with dense ray path coverage, such as
block A here.

To check the resolvability of the spatially varying
smoothing method, we compare the inversion results
of the new and traditional algorithms using a new 2-D
synthetic model. We set this new synthetic model with
0.4° x 0.4° checkerboard anomalies in block A and
1° x 1° checkerboard anomalies in bock B (Fig. 5a),

and then generate the synthetic phase velocity data
with 1 percent Gaussian random noise. For the tradi-
tional approach, the correlation length L., is set to be
a series of values from 5 to 70 km. By contrast, for our
spatially varying smoothing algorithm, since we have
known the appropriate correlation lengths to achieve
expected resolution in block A and block B are 20 and
40 km correspondingly, we let L...(p(r)) vary linearly
with p(r) from Ly, (20 km) to Ly,.x (40 km) (see the
corresponding contour map shown in Fig. 1f) to take
full advantage of the information of path coverage.
Then, we conduct the traditional inversion and the
spatially varying smoothing inversion with the same
synthetic data and a priori model and the results are
shown in Fig. 5.

Then, we calculate the standard deviations of
model differences for the results of the traditional and
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Figure 3
Similar as Fig. 2 but for a the input 0.4° x 0.4° checkerboard model and b—d recovery of the 0.4° x 0.4° checkerboard model using the
traditional method with the fixed correlation length of 20, 25, and 40 km, respectively

new methods in block A, block B, and the whole
study region, respectively. For the traditional method,
the inversion results can achieve the least model
differences in block A, block B, and the whole study
region accordingly, when the corresponding correla-
tion lengths are set to be 20, 40, and 30 km,
respectively (Fig. 4b).

For the traditional inversion with a fixed correla-
tion length of 20 km, it can recover most of the
0.4° x 0.4° anomalies (Fig. 5b) with the least model
difference in block A (Fig. 4b), while artificial
anomalies appear in block B since the very small
correlation length will result in relatively weak reg-
ularization of model parameters and thus
unstable inversion results in regions with sparse path
coverage. When we set the correlation length as
40 km for the traditional method, it can recover the
1° x 1° anomalies almost perfectly (Fig. 5c) with the

least model difference in block B (Fig. 4b), but the
0.4° x 0.4° anomalies get smeared (Fig. 5c) because
the correlation length is similar as the anomaly size.
We can get the recovered model with the least model
difference in the whole study region when the cor-
relation length is set to be 30 km (Fig. 5d), which
somewhat compromises the resolution in both block
A and B. However, the retrieved amplitude of
anomalies in block A (Fig. 5d) is worse than the
result with the correlation length of 20 km (Fig. 5b)
and the recovery of the 1° x 1° anomalies (Fig. 5d)
is less constrained than the result with the correlation
length of 40 km in block B (Fig. 5c¢).

By contrast, the retrieved model of the spatially
varying smoothing method can resolve the 1° x 1°
anomalies properly in block B and have preferable
resolution for the 0.4° x 0.4° anomalies with better
recovery of amplitude of anomalies (Fig. Se) than



Vol. 174, (2017) Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous 945
(@) (b) (c)

0.12 0.1 - - 191 ;

—A— Anomaly Size=1° x 1° —#— Whole Region
n —O— Anomaly Size=0.4° x 0.4° —@&— Block A 189
2 on y y Size=0.4° x 0. = 4 —4— Block B - 18
g E 0.09 =
e = Tg 1.87
z ™ 2 ]
2 % 0.8 F 185
@ |5} R
£ g &
5 009 2
2 2 P 2iss
=) NS 007 Er
: 008 2 z 181
g 2006]_ AN/ &
= 007 s 179 — A
i~ A —®— Tradional Method
0.06 0.05 177 - — - - Adaptive Method
0 10 20 30 40 50 60 70 0 20 40 50 60 70 0 10 20 30 40 50 60 70
LL‘ﬂl‘f (km) L (km) Lcorr (km)

Figure 4
The standard deviation of the phase velocity model differences and c%ata residuals: a the standard deviation of the model differences between
the input and the recovered checkerboard models with the anomaly size 0.4° x 0.4° (circle) and 1° x 1° (triangle) using different correlation
lengths in the traditional tomography. b The standard deviation of the model differences between the input and recovered checkerboard
models with the checkerboard model of mixed anomaly sizes in block A (blue), block B (black), and the whole study region (red). The solid
lines with symbols of dot (blue), diamond (black) and asterisk (red) represent the model differences of the traditional method results using
different correlation lengths in block A, block B, and the whole study region, respectively, and the dashed lines indicates the model
differences of the new method results with the line color for the region same as the traditional method. ¢ The standard deviation of the
traveltime residuals between the input (observed) and synthetic traveltime data with the checkerboard model of mixed anomaly sizes using the
new method (red dashed line) and the traditional method (blue dotted line) with different correlation lengths

that of the traditional method with the correlation
length of 30 km (Fig. 5d). From the perspective of
model difference and data fitting, the result of the
spatially varying smoothing method achieves a small
model difference in block A close to the result with
the fixed correlation of 20 km and a relative close
model difference in block B with the result using the
fixed correlation of 40 km (Fig. 4b). At the same
time, it gets the least model difference in the whole
study area than all the results of the traditional
method with good data fitting (Fig. 4b, c).

Tarantola and Nercessian (1984) can obtain the
posterior model covariance for continuous regional-
ization, which gives meaningful uncertainty estimates
of model parameters. The posterior model errors in
the results of the traditional method and spatially
varying smoothing method (Fig. 6) are calculated
from the posterior covariance matrix. The use of large
correlation lengths reduces ill-conditioning problems
and results in smooth but reliable results with smaller
posterior errors (Fig. 6b). Compared with the results
of the traditional method with correlation lengths of
20 and 30 km, the spatially varying smoothing
algorithm can recover the 1° x 1° pattern better with
smaller posterior errors. And the spatially varying
smoothing algorithm significantly improves the

amplitude recovery of the 0.4° x 0.4° anomalies in
block A with relatively small posterior errors by
contrast with the traditional method with the corre-
lation length of 40 km. Through assessing the model
posterior errors, we can ensure that the increased
resolution of the spatially varying smoothing method
is not at the cost of larger model uncertainties.

4. Application and Discussion

4.1. Application to Data in SE Tibet

As a proof of concept, we apply our method using
the same dispersion data set as in Yao et al. (2010) to
obtain Rayleigh-wave phase velocity variations at
periods 10 and 30 s. The ray path distribution (see
Fig. 1a, c) for these two different periods is excellent,
and the corresponding path density p(r) maps are
shown in Fig. 1b, d using 0.5° grid spacing. The
study region is also meshed with a grid separation of
0.5° for the inversion. For the traditional inversion
approach the correlation length L., is set to be
110 km at 10 and 30 s similar as in Yao et al. (2010),
and for the spatially varying smoothing inversion
method, L., (p(r)) is varying from 50 to 110 km
linearly based on path density (see Fig. 1b, d).
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Figure 5
Checkerboard tests for the ray path coverage at 20 s with the checkerboard model of mixed anomaly sizes: a the checkerboard model with the
mixed 0.4° x 0.4° and 1° x 1° anomalies; b—d the recovery using the traditional method with the fixed correlation length of 20, 30, and
40 km, respectively; e the recovery using the new method. The corresponding path coverage and ray path density map are shown in Fig. le, f

Compared with the phase velocity maps derived
from the traditional inversion and spatially varying
smoothing inversion method, the results show very
similar features with a good correspondence to the
geological features, but the spatially varying smooth-
ing inversion results show more details and relatively

larger velocity variations (Fig. 7). Generally

speaking, the fundamental mode Rayleigh wave
phase velocity is mostly sensitive to shear wave
speed at depths around 1/3 of its corresponding
wavelength. At the period of 10 s, Rayleigh wave
phase velocity is mostly sensitive to shear wave speed
structure between ~5 and 15 km depth, thus the
whole structure is very similar to the map of shear
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24

90

Figure 6
Posterior errors (in percent) of phase velocities at 20 s with the checkerboard model of mixed anomaly sizes: a—c posterior errors for the
recovered phase velocity map using the traditional method with the fixed correlation length of 20, 30 and 40 km, respectively; d posterior
errors for the recovered results using the new method. The corresponding recovery results are shown in Fig. Sb—e

wave speeds at 10 km (Yao et al. 2010). The low
phase velocities appear near major faults zones, such
as Xianshuihe Fault, Batang Fault, Lijiang Fault, Red
River Fault, and Xianjiang Fault zone; and the
boundaries of the low velocity regions seem to
coincide roughly with some major faults in the study
area, e.g., Red River Fault and Lijiang Fault.

The phase velocity at the period of 30 s samples
primarily the shear velocity structure in the lower
crust in the high plateau area and lower crust and
uppermost mantle in Yunnan, according to its sensi-
tivity kernel. Both 30 s phase velocity maps (Fig. 7c,
d) show similar features: low phase velocities appear
beneath the plateau area with crustal thickness of
about 50-75 km (Yao et al. 2010) and high phase
velocities beneath the Sichuan Basin and Yunnan in
SW China, where the crustal thickness is typically
around 40-50 km (Yao et al. 2010). Besides the thick
crustal thickness that contributes to low phase
velocities at 30 s in the high plateau area, previous
tomographic results have revealed apparent mid-

lower crust low velocities in SE Tibet (e.g., Yao et al.
2010; Yang et al. 2012; Liu et al. 2014; Bao et al.
2015), which may also significantly decrease the
phase velocity at 30 s in these regions.

In contrast with the result of the original inversion
method, the spatially varying inversion reveals finer
structures in the Lehigh array area and western part of
the MIT array as the result of high path density and
hence shorter correlation length rather than the
artifacts produced in the inversion; for example, in
the traditional results at 10 s, the low velocity
anomaly seems continuous near Batang Fault, but
for the new method, there are two separated low
velocity regions. And the amplitude of some anoma-
lies also gets larger in the new model such as the high
velocity anomaly near Luzhijiang Fault (Fig. 7d). We
also calculate the posterior errors of the results to
access model uncertainties (Fig. 8), and in most
regions the posterior error of the spatially varying
smoothing method lies within the 1% error contour
line (Fig. 9b, d) except for the central region between
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Figure 7
Rayleigh-wave phase velocity maps at periods 10 and 30 s using the traditional inversion and spatially varying smoothing inversion methods.
a and c give the phase velocity maps at 10 and 30 s using the traditional method with a fixed correlation length of 110 km, respectively. b and
d are the phase velocity maps at 10 and 30 s using the spatially varying smoothing method with the corresponding spatial correlation length
shown in Fig. 1b, d, respectively. The colorbar shows the amplitude of the velocity anomaly in percent. The major faults are depicted as thin
black lines (after Wang et al. 1998; Wang and Burchfiel 2000; Shen et al. 2005), and the corresponding abbreviations are as follows: JLF Jiali
Fault, GZF Ganzi Fault, LMSF Longmenshan Fault, XSHF Xianshuihe Fault, LTF Litang Fault, BTF Batang Fault, ANHF Anninghe Fault,
ZMHF Zemuhe Fault, ZDF Zhongdian Fault, LJF Lijiang Fault, MLF Muli Fault, CHF Chenghai Fault, LZJF Luzhijiang Fault, XJF Xiaojiang
Fault, RRF Red River Fault

the two arrays with non-uniform azimuthal path
coverage, which suggests that the anomaly patterns
of the results (Fig. 7b, d) using the spatially varying
smoothing method are not the artifacts of the inver-
sion. As for the data misfit, compared with the
original inversion, the standard deviation of the
traveltime residuals is reduced from 1.642 to 1.612 s
at 10 s and from 1.505 to 1.468 s at 30 s using the
spatially varying smoothing inversion, meanwhile the
average of the residual is closer to zero. This is mainly
due to the fact that the spatially varying smoothing
inversion has smaller correlation lengths in regions
with denser ray path coverage, thus resulting in less
lateral smearing effects in the model space.

4.2. Two-Step Inversion to Suppress Effect of Data
Outliers

To inspect the performance of our proposed two-
step inversion scheme to suppress the effect of data
outliers, we conduct another synthetic test at 10 s
using the output model of the spatially varying
smoothing method (Fig. 7b) as the “true” model.
We first generate the synthetic phase velocity data
from the “true” model. Among all the synthetic data,
97% (randomly picked) are added 1% random Gaus-
sian noise, and the rest 3% (see Fig. 9 for the paths)
are added 10% random noise, which stand for the
potential data outliers. Then we conduct inversion
adopting the spatially varying smoothing method with
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Figure 8

Posterior errors (in percent) of Rayleigh-wave velocities at periods 10 and 30 s using the traditional and new methods. a and ¢ give the

posterior error maps at 10 and 30 s using the traditional method with a fixed correlation length of 110 km, respectively. b and d are the

posterior error maps at 10 and 30 s using the new method with the corresponding spatial correlation lengths shown in Fig. 1b, d, respectively.
The black lines show the block boundaries in this region
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Figure 9
Statistics and ray path coverage of the synthetic data used in the testgwith data outliers. a Gives histograms of the synthetic data without data
outliers (green, 1% random Gaussian noise added for each measurement) and with data outliers (red), in which 3% ray paths have 10%
random noise (outliers) and only 1% random noise added for the other ray paths. b Shows the ray path coverage of the synthetic data in which
the black lines show the 97% ray paths with 1% random noise while the blue lines show the rest 3% ray paths with 10% random noise
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the spatial correlation length same as those used for
Fig. 7b, and the first and second step inversion results
are shown in Fig. 10a, b, respectively. The corre-
sponding differences between the obtained model of
each step and the “true” model (Fig. 7b) are shown in
Fig. 10c, d, respectively. The first step inversion
results show obvious artifacts and large relative model
differences (above 6%) in the central region (Fig. 10c,
d). In the second step inversion, we increase the a
priori uncertainty for paths with very large misfit (see
Eq. (6)), and the results show that the pattern as well
as amplitude of anomalies can be well retrieved
except the marginal regions with sparse data coverage
(Fig. 10b, d). Moreover, in most of the study region,
the relative model differences are below 2%. This test
well demonstrates that our two-step inversion
scheme can suppress the effect of data outliers
effectively.

(a)
32 -

30 1

28 1

26 1

105

Pure Appl. Geophys.

4.3. Comparisons and Limitations

Our spatially varying smoothing approach and the
Voronoi diagram approach by Debayle and Sam-
bridge (2004) both adopt the continuous
regionalization scheme of Tarantola and Nercessian
(1984) and Montagner (1986), and both methods can
evaluate the variation of lateral resolution and
achieve tomographic models with spatially varying
resolution based on ray path coverage. The Voronoi
diagram approach by Debayle and Sambridge (2004)
uses the local ray path density and azimuthal
coverage to construct spatially adaptive Voronoi
cells (i.e., the model space) but with a fixed
correlation length. However, in our approach, we
use the fixed regular grids but with a spatially varying
correlation length for each grid based on its ray path
density. Hence, in the Voronoi diagram approach, the

(b)
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28
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Figure 10
Recovery tests from the synthetic model (Fig. 7b) using the two—stepgmethod at period 10 s with data outliers shown in Fig. 9. a and b give the
recovered models of first and second step inversion results with the same spatial correlation length shown as in Fig. 1b, respectively. ¢ and
d give the model differences between the recovered models of first and second step inversion and the “true” model (Fig. 7b), respectively.
The colorbar shows the amplitude of the velocity anomaly in percent
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highest resolution is controlled by the fixed correla-
tion length, while in our approach the highest
resolution is controlled by the lowest correlation
length, which is provided by a series of resolution
tests. In regions with sparse path coverage (i.e., lower
resolution), the Voronoi diagram approach increases
the size of the Voronoi cells, while in our approach
we increase the correlation lengths.

There still exit some drawbacks in our spatially
varying smoothing method. In our approach, the
Leon(p(r)) is set to vary linearly with p(r), the ray
path density, with the largest and lowest correlation
lengths determined by a series of checkerboard
resolution tests. However, the traditional checker-
board tests have some potential drawbacks, for
instance, it can neither provide quantitative measures
of resolution nor reveal true structural distortion or
smearing that can be caused by the data coverage
(Rawlinson and Spakman 2016), and the shape of
checkerboard pattern may also affect the recovery
results (Lévéque et al. 1993). A more appropriate
work in the future is to first determine the spatially
varying resolution length via analysis of the resolu-
tion matrix (Yanovskaya and Ditmar 1990; Barmin
et al. 2001) and then relates the spatial correlation
length function linearly with the spatial resolution
length. In addition, we have not considered the
azimuthal path coverage in determining the ray path
density, which also needs to be improved in the
future, in particular for the inversion of azimuthal
anisotropy. And the use of spatial resolution length
estimated from the resolution matrix will be better
than the ray path density for considering the
azimuthal path coverage, which helps to give more
reliable spatially varying correlation lengths.

5. Conclusion

We propose a new approach to achieve spatially
varying smoothing tomography based on the tradi-
tional continuous regionalization method for surface
wave tomography. This new method uses spatially
varying correlation lengths based on the ray path
density instead of a fixed-value correlation length. To
suppress effects of data outliers on inversion results,
we propose a two-step inversion procedure, in which

Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous 951

the data standard errors for paths with very large
misfits in the first step inversion will be significantly
increased in the second step inversion. Our method
inherits the merits of the continuous regionalization
approach including its robustness and clear physical
meanings. The checkerboard tests with different sizes
of anomalies are used to design the range of the
spatially varying correlation lengths. The synthetic
data tests show that the spatially varying smoothing
inversion provides better spatial resolution in regions
with higher path density owing to the choice of
smaller correlation lengths in the inversion. We
applied the proposed method to real surface wave
dispersion data set in SE Tibet. The new algorithm
obtains similar phase velocity structures as the tra-
ditional inversion approach, but the results have
higher spatial resolution in regions with better path
coverage and appear to better resolve the amplitude
of anomalies.
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